
Information -Aware Scheduling Strategies for
Desktop Grid Environment

Er. Jayoti Arora1, Ms. Geeta Arora 2 , Dr. Paramjit3 , Dr. Shaveta4

1Computer Sc. & Engg, B.F.C.E.T, Bathinda, India
2Computer Application, S.A.S.I.I.T.R . Mohali, India

3,4Computer Sc. & Engg , G.Z.S.C.E.T,Bathinda, India

Abstract— In this paper we will show how it is possible to
build Information-aware schedulers able to outperform The
Work Queue with Replication - Fault Tolerant
Scheduler(WQR-FT). We propose different scheduling
policies considering information about resources and
applications. We will discuss two task selection policies and
four machine selection policies that when combined give rise to
8 different scheduling algorithms. As a matter of fact, the
results obtained shows that it is possible to achieve better
performance than WQR-FT and reduce the wasted CPU
cycles.

 Keywords— WQR-FT, GreatET, SmallET, BoT, NoInfo,
CpuInfo, AvailInfo, AllInfo

I. INTRODUCTION

The exploding popularity of the Internet has created a
new much large scale opportunity for Grid computing. As a
matter of fact, millions of desktop PCs, whose idle cycles
can be exploited to run Grid applications, are connected to
wide-area networks both in the enterprise and in the home.
These new platforms for high throughput applications are
called Desktop Grids [1, 2]. The inherent wide distribution,
heterogeneity, and dynamism of Desktop Grids make them
better suited to the execution of loosely-coupled parallel
applications rather than tightly coupled ones. Bag-of-Tasks
applications (BoT) [3, 4] (parallel applications whose tasks
are completely independent from one another) have been
shown [5] to be particularly able to exploit the computing
power provided by Desktop Grids .

In order to take advantage of Desktop Grid environments,
suitable scheduling strategies, tailored to BoT applications,
must be adopted. More specifically, these strategies must be
able to deal with the heterogeneity of resources, the
fluctuations in the performance they deliver because of the
simultaneous execution of competing applications, and their
failures due to crashes/reboots or unplanned departures
from the Grid. In response to this need, various scheduling
algorithms have been proposed in the literature [6, 7, 5, 8, 9,
10], that typically attempt to minimize the makespan of
BoT applications (that is, the time taken to execute all the
tasks in a bag) in spite of resource heterogeneity,
performance fluctuation, and failures.

These algorithms employ Information-free schedulers
that do not base their decisions on information concerning
the status of resources or the characteristics of applications,
Achieving good performance in these situations usually
requires the availability of good information about both the
resources and the tasks, so that a proper scheduling plan can
be devised. Therefore, we focus on choosing which task to
execute next (task selection), and the machine on which it
will be executed (machine selection).So we have proposed

two task selection policies and four machine selection
policies that when combined give rise to 8 different
scheduling algorithms. As a matter of fact, the results
obtained shows that it is possible to achieve better
performance than WQR-FT and reduce the wasted CPU
cycles.

The rest of the paper is organized as follows. In Section
II, we discuss the information -aware scheduling strategies
proposed. In particular, we describe the information-aware
task selection in Section III and the information-aware
machine selection in Section IV. Combining the
information-aware task selection with the information-
aware machine selection, we obtain various scheduling
algorithms described in Section V. In Section VI, we
present the results and, finally conclude the paper.

II. DEVISING INFORMATION -AWARE

SCHEDULING STRATEGIES

When developing a information-aware scheduler, the
obvious starting point is the identification of the types of
information that is reasonable to assume to be available to
the scheduler. Roughly speaking, there are two types of
information that can be exploited by a scheduler, namely
the information about the characteristics of the tasks, and
the information about the characteristics of machines.

 In this paper we will show how it is possible to build
Information-aware schedulers able to outperform WQR-FT.
We will start by considering task selection first, and then
we will move to machine selection. In particular, we will
discuss two task selection policies (called GreatET and
SmallET) and four machine selection policies (called
NoInfo, CpuInfo, AvailInfo and AllInfo) that, when
combined, give rise to 8 different scheduling algorithms.

III. INFORMATION -AWARE TASK SELECTION

In this section, we describe two possible approaches to
improve task selection with respect to WQR-FT that, as
already recalled, chooses at random the next task to be
executed among those tasks having the smallest number of
running instances (candidate tasks). Rather than choosing
this task at random, we propose to exploit the information
about the residual execution time of candidate tasks. In
particular, we propose two task selection policies, that we
call smallest residual execution time and greatest residual
execution time (or SmallET and GreatET, respectively).

In the SmallET, the scheduler selects the task with the
smallest residual execution time, while, in GreatET, the
scheduler selects the task with the greatest residual
execution time. The residual execution time depends on
when the last checkpoint has been saved for that particular
task. In particular, if no checkpoint was saved the residual

Jayoti Arora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1841-1846

1841

execution time corresponds to the execution time, otherwise
the residual execution time is the time needed to complete
the task starting from the last checkpoint saved. Intuitively,
the SmallET attempts to complete as soon as possible the
smallest tasks, in order to have enough free hosts to submit
replicas for the greatest tasks.

IV. INFORMATION-AWARE MACHINE SELECTION

As mentioned before, the second scheduling step consists
in machine selection. Of course, the better the resource
information that is available, the better the quality of the
decisions that can be made by the scheduler. In this section,
we discuss various scheduling policies that rely on
increasing amounts of information and, as such, are able to
obtain better performance (as shown later) at the expenses
of higher costs of obtaining the information they need.

A. Machine selection without information

The first resource policy is very simple: it just selects the
first available machine. This policy, called NoInfo, is
illustrates in detail on Figure 1: it needs the set of resources
contained in the Computational Grid (variable R, line 3)
and a function called Avail(Ri) that returns true if the
resource Ri is idle. For each resource (cycle for, line 6),
NoInfo returns the first resource available (line 8), -1
otherwise (that is there is no available machine, line 11).

Figure 1. NoInfo

B. Information-aware machine selection based on
computational power

In this scenario, the scheduler is able to predict the
computational power of the resources. This means that the
scheduler can estimate the execution time of a specific task
assigned to a specific resource. We propose a machine
selection policy called CpuInfo that selects the available
resource with the highest computational power. The
rationale is that when there are fewer tasks to execute than
ready hosts, this policy is a simple way of avoiding picking
the “slow”

Figure 2. CpuInfo

hosts. Figure 2 illustrates in detail the CpuInfo policy, that
uses two functions: CpuPwr(r) (line 4) is a function that
returns the computational power of resource r, while
Avail(Ri) (line 5) is a function that returns true if resource
Ri is ready to receive task to execute. Initially, the
algorithm sets the first resource as the selected resource
(slctRsc parameter on line 8) and its computational power is
set as the temporary highest computation power
(maxCpuPwr on line 7). In the for cycle (line 9), the
algorithm updates the selected resource if another resource
is available and it has a higher computation power than
maxCpuPwr (lines 10, 11 and 12). At the end of the cycle,
the variable slctRsc contains the selected resource.

C. Information-aware machine selection based on
availability

In this scenario, the scheduler is able to predict the
availability of the resources: namely, it is able to estimate
the instant when a resource becomes unavailable. We
propose a selection policy, called AvailInfo that selects the
resource with the highest availability (that is, the resource
that will become unavailable in the latest time). The
rationale behind AvailInfo is to avoid (or to delay as much
as possible) the occurrence of a machine failure during the
execution of a task. In this way, a task can be completed
without the resubmission due to the resources failures or, at
least, it can live enough to save a "good" checkpoint (that is,
a checkpoint which the residual execution time is small).
Figure 3 illustrates in detail the AvailInfo policy.

Figure 3. AvailInfo

This algorithm uses a function called Relia(r) (line 5) that
returns the reliability level of resource r (that is, the amount
of time from now to when the machine will become
unavailable). Initially, the algorithm sets the first resource
as the selected resource (slctRsc variable on line 8) and its
reliability is set as the temporary best reliable resource
(maxRelia variable on line 7). In the for cycle (line 9), the
algorithm updates the selected resource if another resource
is available and has a better reliability (lines 10, 11 and 12).
At the end of the cycle, the variable slcRsc contains the
selected resource.

1: ---data structures and functions -----
2: M {is the number of resources}
3: R {is the set of resources (Ri is the ith resource)}
4: Avail(Ri){returns true if resource Ri is idle}
5: ------- NoInfo algorithm -----
6: for i = 0 to M do
7: if (Avail(Ri)) then
8: return i;
9: end if
10: end for
11: return -1;

1: ---data structures and functions -----
2: M {is the number of resources}
3: R {is the set of resources (Ri is the ith resource)}
4: CpuPwr(r) {returns the computational power of resource r}
5: Avail(Ri) {returns true if resource Ri is idle}
6: ---CpuInfo algorithm-----
7: maxCpuPwr=CpuPwr(R0);
8: slctRsc=0;
9: for i = 0 to M do
10: if ((Avail(Ri)) AND (CpuPwr(Ri) > maxCpuPwr)) then
11: maxCpuPwr=CpuPwr(Ri);
12: slctRsc=i;
13: end if
14: end for

1: ----- data structures and functions------
2: M {is the number of resources}
3: R {is the set of resources (Ri is the ith resource)}
4: Avail(Ri) {returns true if resource Ri is idle}
5: Relia(r) {returns reliability of resource r}
6: -----AvailInfo algorithm------
7: maxRelia=Relia(R0);
8: slctRsc=0;
9: for i = 0 to M do
10: if ((Avail(Ri)) AND (Relia(Ri)>maxRelia))

then
11: maxRelia=Relia(Ri);
12: slctRsc=i;
13: end if
14: end for

Jayoti Arora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1841-1846

1842

D. Information about availability and computational power

 In this scenario, the scheduler is able to predict both the

availability and the computational power of the resources
that is it is able to decide if a specific task can be completed
in a specific machine without failure. This is due to the fact
that, with full information about the resources, it is possible
to calculate the execution time and determine if the task
completion time precedes the fault event. We propose a
selection policy, called AllInfo, that for each task in the
BoT, it selects the available resource with the highest
computational power able to complete the task considered
without failure. If there is no one resource able to complete
the task without failure, the AllInfo scheduling policy
selects the most powerful machine (as CpuInfo). Figure 4
illustrates in detail the AllInfo policy. This policy uses a
function called ET(r; t) (line 3) that returns the execution
time of task t submitted on resource r. Initially, the
algorithm sets the first resource as the selected resource
(slctRsc variable on line 8) and its computational power is
set as the temporary most powerful resource (maxCpuPwr
variable on line9). In the for cycle (line

 10), the algorithm updates the selected resource if
another resource is available, is able to complete the task
without failure and, finally, has a better reliability (lines 11,
12 and 13). At the end of the cycle, the variable slctRsc
contains the selected resource.

Figure 4. AllInfo

V. SCHEDULING POLICIES

Combining the task selection policies with the resource
selection policies, we obtain 8 different scheduling
algorithms (as we can observe in Table I). In this section,
we discuss the characteristics of each scheduling policy
proposes.

TABLE I

SCHEDULING POLICIES

In order to simplify our discussion throughout the paper
we will use a running example in which we consider 4 tasks
(whose characteristics are reported in Table II) to be
scheduled on 4 machines (whose features are listed in Table
III). With this running example, we can observe the various
performance of the scheduling algorithms propose in the
same scenario.

TABLE II

WORKLOAD EXAMPLE

TABLE III

COMPUTATIONAL GRID EXAMPLE

For each scheduling algorithm presented in this paper,

we will show its scheduling decisions, the execution time
for each task assignment and we note if the task will be
completed without resubmission (that is, the task will not
incur in a fault). In Table IV, we show the assignments
computed by WQR-FT(first column), the correspondent
execution time (second column) and, finally the outcome of
the assignment (third column). In particular, for our running
example, the WQR-FT scheduling algorithm is able to
complete only 2 tasks without resubmission, and we can
note some "bad" decision as assign a long task (T0) to a
slow resource (Rsc0).

TABLE IV

 ASSIGNMENTS COMPUTED BY WQR-FT SCHEDULING Algorithm

Combining the policies SmallET and GreatET with NoInfo,
we obtain two new scheduling algorithms called SmallET-
NoInfo and GreatET-NoInfo. In the first case, as we can
observe in Table V, the SmallET-NoInfo scheduling policy
selects the task from the shortest to the longest (that is, the
task order selection is T1, T2, T3 and T0) assigning them to
the available resources. For simplicity, we assume that the
selection order for the resources is Rsc0, Rsc1, Rsc2 and
Rsc3. Thus, SmallET-NoInfo completes the following

1: ----- data structures and functions-----
2: M {is the number of resources}
3: ET(r,t) {is the execution time of task t on resource r}
4: Avail(Ri) {returns true if resource Ri is idle}
5: R {is the set of resources (Ri is the ith resource)}
6: t {is the task selected}
7: ----AllInfo algorithm-----
8: slctRsc=R0;
9: maxCpuPwr=CpuPwr(R0);
10: for i = 0 to M do
11: if ((Avail(Ri)) AND (Relia(Ri)>ET(Ri,t)) AND
(CpuPwr(Ri)>maxCpuPwr)) then
12: maxCpuPwr=CpuPwr(Ri);
13: slctRsc=i;
14: end if
15: end for

 NoInfo CpuInfo AvailInfo AllInfo

SmallET SmallET-
NoInfo

SmallET-
CpuInfo

SmallET-
AvailInfo

SmallET-
AllInfo

GreatET GreatET-
NoInfo

GreatET-
CpuInfo

GreatET-
AvailInfo

GreatET-
AllInfo

Task

Execution
Time (ET)

T0 200

T1 20

T2 100
T3 160

Resource

Computational Power
(CpuPwr)

Fault
event

Rsc0 1 100
Rsc1 20 40
Rsc2 10 160
Rsc3 4 20

Assignment

Completion Time(CT) Completed

T0=>Rsc0 200 NO
T1=>Rsc1 1 YES
T2=>Rsc2 10 YES
T3=>Rsc3 40 NO

Jayoti Arora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1841-1846

1843

assignments: T1 => Rsc0, T2 => Rsc1, T3 => Rsc2 and T0
=> Rsc3. Comparing these assignments with the WQR-FT,
we note that SmallET is able to complete one more task
without resubmission, and the greatest completion time is
equal to 50 seconds (T0 => Rsc3).

TABLE V

ASSIGNMENTS COMPUTED BY SMALLET-NOINFO SCHEDULING

ALGORITHM

Conversely, the GreatET-NoInfo selects the tasks in this
order: T0, T3, T2 and T1. As we can observe in Table VI,
the GreatET-NoInfo is able to complete 3 tasks over 4, and
the greatest completion time is equal to 100 (T0 => Rsc0).
Thus, the GreatET-NoInfo is better than WQR-FT (since
GreatET-NoInfo completes one more task) but worse than
SmallET-NoInfo (SmallET-NoInfo completes the same
number of tasks and the greatest completion time is 50)

TABLE VI

 ASSIGNMENTS COMPUTED BY GREATET-NOINFO SCHEDULING

ALGORITHM

 Supposing to have information about computational
power of the resources, we can combine the task selection
policy with CpuInfo obtaining two new scheduling policies:
SmallET-CpuInfo (that assigns the task with the smallest
residual time to the most powerful resource available) and
greatET-CpuInfo (that assigns the task with the greatest
residual time to the most powerful resource available). The
rationale behind the SmallET-CpuInfo is to complete the
smallest tasks first in order to have more machines
available to send replicas of the greater tasks as soon as
possible. Conversely, the rationale behind the GreatET-
CpuInfo is to assign the greatest tasks to the fastest machine
to complete them as soon as possible since the average BoT
completion time often depends on the completion of the
greatest task. Observing the data in Table VII, we note that
SmallET-CpuInfo scheduling algorithm is able to complete
just two tasks without resubmission and the slowest
execution time is equals to 100 (T0 => Rsc0)

TABLE VII

 ASSIGNMENTS COMPUTED BY SMALLET-CPUINFO SCHEDULING

ALGORITHM

Conversely, the GreatET-CpuInfo scheduling algorithm

has better performance with respect to SmallET-CpuInfo:
as we can observe from Table VIII, the GreatET-CpuInfo is
able to complete three tasks over four without resubmission
and the slowest completion time is just 25 seconds (T2 =>
Rsc3).

TABLE VIII

ASSIGNMENTS COMPUTED BY GREATET-CPUINFO SCHEDULING

ALGORITHM

Other two scheduling policies can be obtained combining
the task select policies with AvailInfo. In this case, we have
SmallET-Avail Info that assigns the smallest task to the
most reliable machines and GreatET-AvailInfo that assign
the greatest task to the most reliable machine. In Table IX,
we observed the assignments of the SmallET-AvailInfo
scheduling policy: the algorithm is able to complete three
tasks within 50 seconds (T2 =>Rsc0). Conversely, the
GreatET-Avail Info scheduling policy is able to complete
three tasks and the slowest execution time is 80 seconds (T3
=>Rsc0), as we can observe in Table X. Finally, if the
scheduler is able to predict both the availability and the
computational power of the resources, it can use two new
scheduling policies: SmallET-AllInfo and GreatET-AllInfo.
In Table XI, we can observe the scheduling decisions of
SmallET-AllInfo. This scheduling algorithm is able to
complete just two tasks and the slowest execution time is
100 second

TABLE IX

ASSIGNMENTS COMPUTED BY SMALLET-AVAILINFO SCHEDULING

ALGORITHM

Assignment Completion
Time(CT)

Completed

T1 => Rsc2 2 Yes

T2 => Rsc0 100 Yes

T3 => Rsc1 8 Yes

T0 => Rsc3 50 No

Assignment Completion
Time (CT)

Completed

T1 => Rsc0 20 Yes

T2 => Rsc1 5 Yes

T3 => Rsc2 16 Yes

T0 => Rsc3 50 No

Assignment Completion
Time(CT)

Completed

T0 => Rsc0 200 No

T3 => Rsc1 8 Yes

T2 => Rsc2 10 Yes

T1 => Rsc3 5 Yes

Assignment Completion
Time(CT)

Completed

T1 => Rsc1 1 Yes

T2 => Rsc2 10 Yes

T3 => Rsc3 40 No

T0 => Rsc0 200 No

Assignment Completion
Time(CT)

Completed

T0 => Rsc1 10 Yes
T3 => Rsc2 16 Yes

T2 => Rsc3 25 No

T1 => Rsc0 20 Yes

Jayoti Arora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1841-1846

1844

TABLE X

 ASSIGNMENTS COMPUTED BY GREATET-AVAILINFO SCHEDULING

ALGORITHM

TABLE XI

 ASSIGNMENTS COMPUTED BY SMALLET-ALLINFO SCHEDULING

ALGORITHM

(T0 =>Rsc0). In Table XII, we can observe the scheduling
decisions of GreatET-AllInfo. This scheduling algorithm is
able to complete all tasks the slowest execution time is 50
seconds (T2 => Rsc0). In our example,GreatET-AllInfo is
the only one scheduling policy that is able to complete all
tasks without resubmission, as we can observe in the
summary table XIII. In this last table, for each scheduling
policy, we report the number of tasks completed without
resubmission and the time necessary to complete them.

TABLE XI1

ASSIGNMENTS COMPUTED BY GREATET-ALLINFO SCHEDULING

ALGORITHM

TABLE XIII

 SUMMARY OF THE SCHEDULING ALGORITHMS PERFORMANCE FOR OUR

RUNNING EXAMPLE

VI. PERFORMANCE ANALYSIS

In order to assess the performance of the scheduling
policies proposed, we compare them with the plain WQR-
FT. Our comparison is based on metric: average no of
completed tasks

A. Results

In this section, we described the results we obtained in our
experiments. In order to verify if the policies proposed
achieve better performance than plain WQR-FT, we
performed a set of experiments in which we progressively
increase the number of tasks for each bag (the parameter
called RR), computed the average No of completed tasks
with respect to WQR-FT.
 In particular, Figure 5(a) illustrates the average No of
completed tasks of SmallET-NoInfo and GreatET-NoInfo
relative to WQR-FT, for different values of RR. As we can
observe, the GreatET-NoInfo & SmallET-NoInfo
scheduling policy achieves better performance with respect
to WQR-FT.

Fig. 5 Average No of completed tasks with respect to WQR-FT

In particular, when RR = 4, GreatET-NoInfo is able to
complete the BoT almost 25% faster than WQR-FT.
In Figure 5(b),(c),(d), we illustrates the performance of the
scheduling policies for the various levels of information
We can observe that the policies GreatET-* (that is,
GreatET-NoInfo, GreatET-CpuInfo, GreatET-AvailInfo)
achieve similar performance independently from the
information about the resources & the policies SmallET-*
(that is, SmallET -NoInfo, SmallET- AvailInfo) achieve
similar performance independently from the information
about the resource.
 In Figure 5(b), we observe the average BoT completion
time of the scheduling strategies SmallET-CpuInfo and
GreatET-CpuInfo relative to WQR-FT. Choosing the
resource based on their computation power introduce
benefits for GreatET -CpuInfo scheduling policiy. For
instance GreatET-CpuInfo outperforms WQR-FT and this
is due, once again, to the importance of having information
about the computational power of the resources. Observing
Figure 5(c), we can note that the information about the
availability is important than the information about the
computational power. As a matter of the fact, the

Assignment Completion Time(CT) Completed

T0 => Rsc2 20 Yes
T3 => Rsc0 160 No
T2 => Rsc1 5 Yes

T1 => Rsc3 5 Yes

Assignment Completion
Time(CT)

Completed

T1 => Rsc1 1 Yes
T2 => Rsc2 10 Yes

T3 => Rsc3 40 No

T0 => Rsc0 200 No

Assignment Completion
Time(CT)

Completed

T0 => Rsc1 10 Yes

T3 => Rsc2 16 Yes

T2 => Rsc0 100 Yes

T1 => Rsc3 5 Yes

Scheduling policy
Final Completion
Time(FCT)

Num. of tasks
completed

WQR-FT 10 2
SmallET-NoInfo 20 3
GreatET-NoInfo 10 3
SmallET-CpuInfo 10 2
GreatET-CpuInfo 20 3
SmallET-AvailInfo 100 3
GreatET-AvailInfo 20 3
SmallET-AllInfo 10 2
GreatET-AllInfo 100 4

Jayoti Arora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1841-1846

1845

SmallET-Availinfo achieves better performances than
SmallET-CpuInfo.Finally, combining availability
information and computational power of the resource we
are able to achieve good performance. For instance
GreatET-AllInfo outperforms GreatET-CpuInfo and this is
due, once again, to the importance of having information
about the computational power & availability information
of the resources. GreatET-AllInfo is the best scheduling
policy in term of the average BoT completion time

B. References
S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and C. Hwang.

Characterizing and Classifying Desktop Grid. In CCGRID ’07:
Proceedings of the Seventh IEEE International Symposium on
Cluster Computing and the Grid, pages 743–748, Washington, DC,
USA, 2007. IEEE Computer Society

D. Kondo, A. Chien, and H. Casanova. Resource management for rapid
application turnaround on enterprise desktop grids. In Proc. of
Super Computing Conference, 2004.

Real R., Yamin A. et al., “Resource scheduling on Grid: handling
uncertainty”, Proceedings of the fourth international workshop on
Grid Computing, 2003

J. Smith and S. Srivastava. A System for Fault-Tolerant Execution of Data
and Compute Intensive Programs over a Network of Workstations.

In Proc. of EuroPar’96, volume 1123 of Lecture Notes in
Computer Science, 1996

D. da Silva, W. Cirne, and F. Brasileiro. Trading Cycles fro Information:
Using Replication to Schedule Bag-of-Tasks Applications on
Computational Grids. In Proc. of EuroPar 2003, volume 2790 of
Lecture Notes in Computer Science, 2003

C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski. Fault-
aware scheduling for Bag-of-Tasks applications on Desktop Grids.
In Proc. of 7th IEEE/ACM International Conference on Grid
Computing, Barcelona, Spain, Sept. 2006. IEEE Press.

C. Anglano and M. Canonico. Fault-Tolerant Scheduling for Bag-of-Tasks
Grid Applications. In Proc. of the 2005 European Grid Conference,
number 3470 in Lecture Notes in Computer Science, Amsterdam,
The Netherlands, Feb. 2005. Springer, Berlin

D. Kondo, A. Chien, and H. Casanova. Scheduling Task Parallel
Applications for Rapid Application Turnardound on Enterprise
Desktop Grids. Journal of Grid Computing, 2007.

Y. C. Lee and A. Y. Zomaya. Practical scheduling of bagof- tasks
applications on grids with dynamic resilience. IEEE Trans.
Comput., 56(6):815–825, 2007.

D. Zhou and V. Lo. Wave Scheduler: Scheduling for Faster Turnaround
Time in Peer-Based Desktop Grid Systems. In Proc. of
11thWorkshop on Job Scheduling Strategies for Parallel
Processing, number 3834 in Lecture Notes in Computer Science,
Boston, MA, USA, June 2005. Springer, Berlin.

Jayoti Arora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1841-1846

1846

